Germanium vs Silicon Diode Testing: Read this document carefully, so you will not be the victim of cheap knock-off or the wrong type diodes.

The general rule is that **Silicon** diodes have a voltage drop across the Anode to Cathode of 0.7 V (7/10 tenths), and the **Germanium** diodes have a voltage drop of 0.3 V (3/10 tenths) more or less. Either diode voltage drop (silicon or germanium) will display a reading within approximately 5% of these readings.

Most digital meters (DVM) have a switch setting that is used to measure voltage drop across these diodes. This setting is usually indicated by a diode symbol to let the user know the DVM is capable of measuring forward bias voltage. This setting will tell you immediately if the diode is a germanium, or silicon diode. You need to set the selector switch on your meter to the diode test symbol.

Measuring Forward Bias Voltage

To measure the forward bias voltage characteristic you connect the black probe of your meter to the cathode terminal. The cathode terminal is on the end with a band. You then connect the red probe to the anode terminal.

Set your DVM/DMM to the diode test mode, it should provide you with the respective voltage drop. If the figure is 0.3 V or less, the diode is a *germanium* type. If the voltage drop is 0.7 V or less the diode is a *silicon* diode.

Sensitivity and Forward Bias Characteristics:

The sensitivity of a diode to radio waves depends upon its forward bias voltage. This is the voltage across the diode terminals. When it falls below this threshold value, the diode will stop conducting. Obviously, the lower this threshold value is, the greater the sensitivity of the diode to the weak radio signals.
CONCLUSIONS:

When comparing germanium diodes with silicon diodes of similar forward bias voltage, silicon diodes do not perform as well as the germanium.

Germanium has many properties that silicon diodes do not have. Germanium requires very little forward current. Forward current in a germanium diode is in the microampere region, while silicon diodes require amperes. This makes germanium a much better choice for both medium and high frequency radio signals.

Germanium also exhibits a very low, point-contact junction capacitance, while the silicon diode has much higher capacitance. A low junction capacitance allows germanium diodes to operate more effectively at high RF frequencies.

In addition, reverse leakage current for germanium diodes is in the magnitude of 1000, much more than silicon. This makes the non-linear characteristics of the germanium diode much more effective for RF detection and demodulation than silicon.

Therefore, our conclusions are; germanium diodes provide the best performance in crystal radios, RF probes, HF, and VHF signal detection.

BuxComm High Quality, CRYSTAL RADIO ANTENNA KIT, $14.95 cat# 50CRAK

This Crystal Radio Antenna kit consists of 50 feet of #16 AWG insulated & stranded copper antenna wire, two heavy-duty, Delrin, UV resistant antenna insulators and instruction sheet.